direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C22.35C24, C22.42C25, C24.484C23, C23.273C24, C42.544C23, C22.762- 1+4, C4⋊Q8⋊75C22, (C2×C4).45C24, (C4×Q8)⋊87C22, C4⋊C4.284C23, C22⋊C4.9C23, (C2×Q8).424C23, C42.C2⋊41C22, C2.7(C2×2- 1+4), (C23×C4).586C22, (C2×C42).919C22, C22⋊Q8.221C22, (C22×C4).1182C23, C42⋊2C2.12C22, (C22×Q8).489C22, C42⋊C2.338C22, (C2×C4×Q8)⋊46C2, (C2×C4⋊Q8)⋊47C2, C4.73(C2×C4○D4), (C2×C42.C2)⋊40C2, C2.19(C22×C4○D4), (C2×C22⋊Q8).60C2, (C2×C4).716(C4○D4), (C2×C4⋊C4).948C22, C22.155(C2×C4○D4), (C2×C42⋊C2).63C2, (C2×C42⋊2C2).19C2, (C2×C22⋊C4).375C22, SmallGroup(128,2185)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22.35C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=g2=b, e2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg-1=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 620 in 502 conjugacy classes, 396 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×Q8, C22⋊Q8, C42.C2, C42⋊2C2, C4⋊Q8, C23×C4, C22×Q8, C2×C42⋊C2, C2×C4×Q8, C2×C22⋊Q8, C2×C42.C2, C2×C42.C2, C2×C42⋊2C2, C2×C4⋊Q8, C22.35C24, C2×C22.35C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2- 1+4, C25, C22.35C24, C22×C4○D4, C2×2- 1+4, C2×C22.35C24
(1 49)(2 50)(3 51)(4 52)(5 20)(6 17)(7 18)(8 19)(9 55)(10 56)(11 53)(12 54)(13 63)(14 64)(15 61)(16 62)(21 59)(22 60)(23 57)(24 58)(25 43)(26 44)(27 41)(28 42)(29 35)(30 36)(31 33)(32 34)(37 48)(38 45)(39 46)(40 47)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 19)(2 20)(3 17)(4 18)(5 50)(6 51)(7 52)(8 49)(9 29)(10 30)(11 31)(12 32)(13 40)(14 37)(15 38)(16 39)(21 25)(22 26)(23 27)(24 28)(33 53)(34 54)(35 55)(36 56)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 19 43)(2 58 20 42)(3 57 17 41)(4 60 18 44)(5 28 50 24)(6 27 51 23)(7 26 52 22)(8 25 49 21)(9 61 29 45)(10 64 30 48)(11 63 31 47)(12 62 32 46)(13 33 40 53)(14 36 37 56)(15 35 38 55)(16 34 39 54)
(2 20)(4 18)(5 50)(7 52)(10 30)(12 32)(13 15)(14 39)(16 37)(21 23)(22 28)(24 26)(25 27)(34 54)(36 56)(38 40)(41 43)(42 60)(44 58)(45 47)(46 64)(48 62)(57 59)(61 63)
(1 33 3 35)(2 36 4 34)(5 10 7 12)(6 9 8 11)(13 41 15 43)(14 44 16 42)(17 55 19 53)(18 54 20 56)(21 47 23 45)(22 46 24 48)(25 63 27 61)(26 62 28 64)(29 49 31 51)(30 52 32 50)(37 60 39 58)(38 59 40 57)
G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,20)(6,17)(7,18)(8,19)(9,55)(10,56)(11,53)(12,54)(13,63)(14,64)(15,61)(16,62)(21,59)(22,60)(23,57)(24,58)(25,43)(26,44)(27,41)(28,42)(29,35)(30,36)(31,33)(32,34)(37,48)(38,45)(39,46)(40,47), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,19)(2,20)(3,17)(4,18)(5,50)(6,51)(7,52)(8,49)(9,29)(10,30)(11,31)(12,32)(13,40)(14,37)(15,38)(16,39)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,19,43)(2,58,20,42)(3,57,17,41)(4,60,18,44)(5,28,50,24)(6,27,51,23)(7,26,52,22)(8,25,49,21)(9,61,29,45)(10,64,30,48)(11,63,31,47)(12,62,32,46)(13,33,40,53)(14,36,37,56)(15,35,38,55)(16,34,39,54), (2,20)(4,18)(5,50)(7,52)(10,30)(12,32)(13,15)(14,39)(16,37)(21,23)(22,28)(24,26)(25,27)(34,54)(36,56)(38,40)(41,43)(42,60)(44,58)(45,47)(46,64)(48,62)(57,59)(61,63), (1,33,3,35)(2,36,4,34)(5,10,7,12)(6,9,8,11)(13,41,15,43)(14,44,16,42)(17,55,19,53)(18,54,20,56)(21,47,23,45)(22,46,24,48)(25,63,27,61)(26,62,28,64)(29,49,31,51)(30,52,32,50)(37,60,39,58)(38,59,40,57)>;
G:=Group( (1,49)(2,50)(3,51)(4,52)(5,20)(6,17)(7,18)(8,19)(9,55)(10,56)(11,53)(12,54)(13,63)(14,64)(15,61)(16,62)(21,59)(22,60)(23,57)(24,58)(25,43)(26,44)(27,41)(28,42)(29,35)(30,36)(31,33)(32,34)(37,48)(38,45)(39,46)(40,47), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,19)(2,20)(3,17)(4,18)(5,50)(6,51)(7,52)(8,49)(9,29)(10,30)(11,31)(12,32)(13,40)(14,37)(15,38)(16,39)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,19,43)(2,58,20,42)(3,57,17,41)(4,60,18,44)(5,28,50,24)(6,27,51,23)(7,26,52,22)(8,25,49,21)(9,61,29,45)(10,64,30,48)(11,63,31,47)(12,62,32,46)(13,33,40,53)(14,36,37,56)(15,35,38,55)(16,34,39,54), (2,20)(4,18)(5,50)(7,52)(10,30)(12,32)(13,15)(14,39)(16,37)(21,23)(22,28)(24,26)(25,27)(34,54)(36,56)(38,40)(41,43)(42,60)(44,58)(45,47)(46,64)(48,62)(57,59)(61,63), (1,33,3,35)(2,36,4,34)(5,10,7,12)(6,9,8,11)(13,41,15,43)(14,44,16,42)(17,55,19,53)(18,54,20,56)(21,47,23,45)(22,46,24,48)(25,63,27,61)(26,62,28,64)(29,49,31,51)(30,52,32,50)(37,60,39,58)(38,59,40,57) );
G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,20),(6,17),(7,18),(8,19),(9,55),(10,56),(11,53),(12,54),(13,63),(14,64),(15,61),(16,62),(21,59),(22,60),(23,57),(24,58),(25,43),(26,44),(27,41),(28,42),(29,35),(30,36),(31,33),(32,34),(37,48),(38,45),(39,46),(40,47)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,19),(2,20),(3,17),(4,18),(5,50),(6,51),(7,52),(8,49),(9,29),(10,30),(11,31),(12,32),(13,40),(14,37),(15,38),(16,39),(21,25),(22,26),(23,27),(24,28),(33,53),(34,54),(35,55),(36,56),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,19,43),(2,58,20,42),(3,57,17,41),(4,60,18,44),(5,28,50,24),(6,27,51,23),(7,26,52,22),(8,25,49,21),(9,61,29,45),(10,64,30,48),(11,63,31,47),(12,62,32,46),(13,33,40,53),(14,36,37,56),(15,35,38,55),(16,34,39,54)], [(2,20),(4,18),(5,50),(7,52),(10,30),(12,32),(13,15),(14,39),(16,37),(21,23),(22,28),(24,26),(25,27),(34,54),(36,56),(38,40),(41,43),(42,60),(44,58),(45,47),(46,64),(48,62),(57,59),(61,63)], [(1,33,3,35),(2,36,4,34),(5,10,7,12),(6,9,8,11),(13,41,15,43),(14,44,16,42),(17,55,19,53),(18,54,20,56),(21,47,23,45),(22,46,24,48),(25,63,27,61),(26,62,28,64),(29,49,31,51),(30,52,32,50),(37,60,39,58),(38,59,40,57)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4L | 4M | ··· | 4AH |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2- 1+4 |
kernel | C2×C22.35C24 | C2×C42⋊C2 | C2×C4×Q8 | C2×C22⋊Q8 | C2×C42.C2 | C2×C42⋊2C2 | C2×C4⋊Q8 | C22.35C24 | C2×C4 | C22 |
# reps | 1 | 1 | 2 | 2 | 5 | 4 | 1 | 16 | 8 | 4 |
Matrix representation of C2×C22.35C24 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 3 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 3 | 3 | 1 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 2 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 | 1 | 2 |
0 | 0 | 0 | 0 | 2 | 0 | 4 | 4 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,4,0,0,3,0,0,0,0,4,0,2,3,0,0,0,0,3,2,0,0,0,0,0,0,1,0,0,1],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,3,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,2,0,2],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,1,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,3,2,0,0,0,0,4,0,3,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,2,4] >;
C2×C22.35C24 in GAP, Magma, Sage, TeX
C_2\times C_2^2._{35}C_2^4
% in TeX
G:=Group("C2xC2^2.35C2^4");
// GroupNames label
G:=SmallGroup(128,2185);
// by ID
G=gap.SmallGroup(128,2185);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,456,1430,387,1123,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=g^2=b,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g^-1=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations